5 Aroma Compounds

5.1 Foreword

5.1.1 Concept Delineation

When food is consumed, the interaction of taste, odor and textural feeling provides an overall sensation which is best defined by the English word "flavor". German and some other languages do not have an adequate expression for such a broad and comprehensive term. Flavor results from compounds that are divided into two broad classes: Those *responsible for taste* and those *responsible for odors*, the latter often designated as aroma substances. However, there are compounds which provide both sensations.

Compounds *responsible for taste* are generally nonvolatile at room temperature. Therefore, they interact only with taste receptors located in the taste buds of the tongue. The four important basic taste perceptions are provided by: sour, sweet, bitter and salty compounds. They are covered in separate sections (cf., for example, 8.10, 22.3, 1.2.6, 1.3.3, 4.2.3 and 8.8). Glutamate stimulates the fifth basic taste (cf. 8.6.1).

Aroma substances are volatile compounds which are perceived by the odor receptor sites of the smell organ, i. e. the olfactory tissue of the nasal cavity. They reach the receptors when drawn in through the nose (orthonasal detection) and via the throat after being released by chewing (retronasal detection). The concept of aroma substances, like the concept of taste substances, should be used loosely, since a compound might contribute to the typical odor or taste of one food, while in another food it might cause a faulty odor or taste, or both, resulting in an off-flavor.

5.1.2 Impact Compounds of Natural Aromas

The amount of volatile substances present in food is extremely low (ca. 10-15 mg/kg). In general, however, they comprise a large number of

components. Especially foods made by thermal processes, alone (e.g., coffee) or in combination with a fermentation process (e.g., bread, beer, cocoa, or tea), contain more than 800 volatile compounds. A great variety of compounds is often present in fruits and vegetables as well.

All the known volatile compounds are classified according to the food and the class of compounds and published in a tabular compilation (*Nijssen*, *L. M.* et al., 1999). A total of 7100 compounds in more than 450 foods are listed in the 1999 edition, which is also available as a database on the internet.

Of all the volatile compounds, only a limited number are important for aroma. Compounds that are considered as aroma substances are prima-

Table 5.1. Examples of key odorants

Compound	Aroma	Occurrence
(R)-Limonene	Citrus-like	Orange juice
(R)-1-p-Menthene-	Grapefruit-	Grapefruit juice
8-thiol	like	
Benzaldehyde	Bitter	Almonds,
	almond-like	cherries, plums
Neral/geranial	Lemon-like	Lemons
1-(p-Hydroxy-	Raspberry-	Raspberries
phenyl)-3-butanone (raspberry ketone)	like	
(R)-(-)-1-Octen-3-ol	Mushroom-	Champignons,
	like	Camembert
		cheese
(E,Z)-2,6-	Cucumber-	Cucumbers
Nonadienal	like	
Geosmin	Earthy	Beetroot
trans-5-Methyl-2- hepten-4-one (filbortone)	Nut-like	Hazelnuts
2 Eurfurylthiol	Roasted	Coffee
4 Hydroxy 2.5	Caramel	Bisquite
dimothyl 2(2H)	Liko	dark beer
furanona	like	uark beer,
2 A costrul 1 promolino	Deastad	White bread
2-Acetyi-1-pyitoinne	Roasteu	crust

rily those which are present in food in concentrations higher than the odor and/or taste thresholds (cf. "Aroma Value", 5.1.4). Compounds with concentrations lower than the odor and/or taste thresholds also contribute to aroma when mixtures of them exceed these thresholds (for examples of additive effects, see 3.2.1.1, 20.1.7.8, 21.1.3.4).

Among the aroma substances, special attention is paid to those compounds that provide the characteristic aroma of the food and are, consequently, called key odorants (character impact aroma compounds). Examples are given in Table 5.1.

In the case of important foods, the differentiation between odorants and the remaining volatile compounds has greatly progressed. Important findings are presented in the section on "Aroma" in the corresponding chapters.

5.1.3 Threshold Value

The lowest concentration of a compound that is just enough for the recognition of its odor is called the odor threshold (recognition threshold). The detection threshold is lower, i. e., the concentration at which the compound is detectable but the aroma quality still cannot be unambiguously established. The threshold values are frequently determined by smelling (orthonasal value) and by tasting the sample (retronasal value). With a few exceptions, only the orthonasal values are given in this chapter. Indeed, the example of the carbonyl compounds shows how large the difference between the ortho- and retronasal thresholds can be (cf. 3.7.2.1.9).

Threshold concentration data allow comparison of the intensity or potency of odorous substances. The examples in Table 5.2 illustrate that great differences exist between individual aroma compounds, with an odor potency range of several orders of magnitude.

In an example provided by nootkatone, an essential aroma compound of grapefruit peel oil (cf. 18.1.2.6.3), it is obvious that the two enantiomers (optical isomers) differ significantly in their aroma intensity (cf. 5.2.5 and 5.3.2.4) and, occasionally, in aroma quality or character.

The threshold concentrations (values) for aroma compounds are dependent on their vapor pressure, which is affected by both temperature and

Table 5.2. Odor threshold values in water of some aroma compounds (20 $^{\circ}$ C)

Compound	Threshold value (mg/l)
Ethanol	100
Maltol	9
Furfural	3.0
Hexanol	2.5
Benzaldehyde	0.35
Vanillin	0.02
Raspberry ketone	0.01
Limonene	0.01
Linalool	0.006
Hexanal	0.0045
2-Phenylethanal	0.004
Methylpropanal	0.001
Ethylbutyrate	0.001
(+)-Nootkatone	0.001
(-)-Nootkatone	1.0
Filbertone	0.00005
Methylthiol	0.00002
2-Isobutyl-3-methoxypyrazine	0.000002
1-p-Menthene-8-thiol	0.0000002

medium. Interactions with other odor-producing substances can result in a strong increase in the odor thresholds. The magnitude of this effect is demonstrated in a model experiment in which the odor thresholds of compounds in water were determined in the presence and absence of 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HD3F). The results in Table 5.3 show that HD3F does not influence the threshold value of 4-vinylguaiacol. However, the threshold values of the other odor-

Table 5.3. Influence of 4-hydroxy-2,5-dimethyl-3(2H)furanone (HD3F) on the odor threshold of aroma substances in water

Compound	Threshold	value ($\mu g/1$)	Ratio
	I ^a	II ^b	II to I
4-Vinylguaiacol	100	90	≈ 1
2,3-Butanedione	15	105	7
2,3-Pentanedione	30	150	5
2-Furfurylthiol	0.012	0.25	20
β-Damascenone	2×10^{-3}	0.18	90

^a I, odor threshold of the compound in water.

^b II, odor threshold of the compound in an aqueous HD3F solution having a concentration (6.75 mg/l), aroma value A = 115) as high as in a coffee drink.

Compound	Threshold (mg/kg) in	
	Water	Beer
n-Butanol	0.5	200
3-Methylbutanol	0.25	70
Dimethylsulfide	0.00033	0.05
(E)-2-Nonenal	0.00008	0.00011

 Table 5.4. Comparison of threshold values^a in water and beer

^a Odor and taste.

ants increase in the presence of HD3F. This effect is the greatest in the case of β -damascenone, the threshold value being increased by a factor of 90. Other examples in this book which show that the odor threshold of a compound increases when it is influenced by other odor-producing substances are a comparison of the threshold values in water and beer (cf. Table 5.4) as well as in water and in aqueous ethanol (cf. 20.2.6.9).

5.1.4 Aroma Value

As already indicated, compounds with high "aroma values" may contribute to the aroma of foods. The "aroma value" A_x of a compound is calculated according to the definition:

$$A_x = \frac{c_x}{a_x} \tag{5.1}$$

(c_x : concentration of compound X in the food, a_x : odor threshold (cf. 5.1.3) of compound X in the food). Methods for the identification of the corresponding compounds are described under Section 5.2.2.

The evaluation of volatile compounds on the basis of the aroma value provides only a rough pattern at first. The dependence of the odor intensity on the concentration must also be taken into account. In accordance with the universally valid law of *Stevens* for physiological stimuli, it is formulated as follows:

$$E = k \cdot (S - S_o)^n \tag{5.2}$$

E: perception intensity, *k*: constant, *S*: concentration of stimulant, S_o : threshold concentration of stimulant.

The examples presented in Fig. 5.1 show that the exponent n and, therefore, the dependency of the odor intensity on the concentration can vary substantially. Within a class of compounds, the range of variations is not very large, e.g., n = 0.50-0.63 for the alkanals C₄–C₉.

In addition, additive effects that are difficult to assess must also be considered. Examinations of mixtures have provided preliminary information. They show that although the intensities of compounds with a similar aroma note add up, the intensity of the mixture is usually lower than the sum of the individual intensities (cf. 3.2.1.1). For substances which clearly differ in their aroma note, however, the odor profile of a mixture is composed of the odor profiles of the components added together, only when the odor intensities are approximately equal. If the concentration ratio is such that the odor intensity of one component predominates, this component then largely or completely determines the odor profile.

Examples are (E)-2-hexenal and (E)-2-decenal which have clearly different odor profiles (cf. Fig. 5.2 a and 5.2 f). If the ratio of the odor intensities is approximately one, the odor notes of both aldehydes can be recognized in the odor profile of the mixture (Fig. 5.2 d). But if the dominating odor intensity is that of the decenal (Fig. 5.2 b), or of the hexenal (Fig. 5.2 e), that particular note determines the odor profile of the mixture.

Fig. 5.1. Relative odor intensity I_{rel} (reference: n-butanol) as a function of the stimulant concentration (according to *Dravnieks*, 1977).

Fig. 5.2. Odor profiles of (E)-2-decenal (D), (E)-2hexenal (H) and mixtures of both aldehydes (according to *Laing* and *Willcox*, 1983). The following concentrations (mg/kg) dissolved in di-2-ethylhexyl-phthalate were investigated: 50 (D); 2 (H¹); 3.7 (H²); 11 (H³) and 33 (H⁴).

 I_D and I_H : Odor intensity of each concentration of (E)-2-decenal and (E)-2-hexenal. Odor quality: 1, warm; 2, like clean washing; 3, cardboard; 4, oily, fatty; 5, stale; 6, paint; 7, candle; 8, rancid; 9, stinkbug; 10, fruity; 11, apple; 12, almond; 13, herbal, green; 14, sharp, pungent; 15, sweet; 16, banana; 17, floral. The broken line separates the aroma qualities of (E)-2-decenal (*left side*) and (E)-2-hexenal

The mixture in Fig. 5.2, c gives a new odor profile because definite features of the decenal (stale, paint-like, rancid) and the hexenal (like apples, almonds, sweet) can no longer be recognized in it. The examples show clearly that the aroma profiles of foods containing the same aroma substances can be completely dissimilar owing to quantitative differences. For example, changes in the recipe or in the production process which cause alterations in the concentrations of the aroma substances can interfere with the balance in such a way that an aroma profile with unusual characteristics is obtained.

5.1.5 Off-Flavors, Food Taints

An off-flavor can arise through foreign aroma substances, that are normally not present in a food, loss of key odorants, or changes in the concentration ratio of individual aroma substances. Figure 5.3 describes the causes for aroma defects in food. In the case of an odorous contaminant, which enters the food via the air or water and then gets enriched, it can be quite difficult to determine its origin if the limiting concentration for odor perception is exceeded only on enrichment. Examples of some off-flavors that can arise during food processing and storage are listed in Table 5.5. Examples of microbial metabolites wich may be involved in pigsty-like and earthymuddy off-flavors are skatole (I; faecal-like, $10 \,\mu\,g/kg^*$), 2-methylisoborneol (II; earthymuddy, $0.03 \,\mu g/kg^*$) and geosmin (III; earthy, $(-): 0.01 \,\mu\,g/kg^*; (+): 0.08 \,\mu g/kg^*):$

2,4,6-Trichloroanisole (IV) with an extremely low odor threshold (mouldy-like: $3.10^{-5} \,\mu \,g/kg$, water) is an example of an off-flavor substance (cf. 20.2.7) which is produced by fungal degradation and methylation of pentachlorophenol fungicides.

To a certain extent, unwanted aroma substances are concealed by typical ones. Therefore, the threshold above which an off-flavor becomes noticeable can increase considerably in food compared to water as carrier, e.g., up to $0.2 \,\mu g/kg$ 2,4,6-trichloroanisole in dried fruits.

^{*}Odor threshold in water.

344 5 Aroma Compounds

	III 1000 products		
Food product Of	ff-flavor	Cause	
Milk Su	inlight flavor	Photooxidation of methionine to methional	
Milk powder Be	ean-like	(with riboflavin as a sensitizer) The level of O_2 in air too high: ozonolvis of	
		8,15- and 9,15-isolinoleic acid to	
		6-trans-nonenal	
Milk powder Gl	luey	Degradation of tryptophan to o-amino-	
Milk fat Me	etallic	Autoxidation of pentaene- and hexaene fatty	
AC11 1 / AC	1.	acids to octa-1,cis-5-dien-3-one	
Milk products Ma	alty	Faulty fermentation by <i>Streptococcus lactis,</i> var maltigenes: formation of phenylacetaldehyde	
		and 2-phenylethanol from phenylalanine	
Peas, Ha	ay-like	Saturated and unsaturated aldehydes,	
deep froze		octa-3,5-dien-2-one, 3-alkyl-2-methoxypyrazines,	
Orange juice Gr	rapefruit note	Metal-catalyzed oxidation or photooxidation	
		of valencene to nootkatone	
		$\left[\begin{array}{c} 1 \\ 1 \end{array}\right] \rightarrow \left[\begin{array}{c} 1 \\ 1 \end{array}\right]$	
Orange juice Te	erpene note	d-Limonene oxidation to carvone	
		$ \rightarrow $	
		\bigvee \bigvee	
		\downarrow \downarrow	
D	0		
Passion Ar fruit juice du	roma flattening	Oxidation of (6-trans-2' - trans)-6-(but-2'-envliden)-1.5.5-	
nun juice uu	ing pusted ization	trimethylcyclohex-1-ene to 1,1,6-trimethyl-1,2-	
		dihydronaphthalene:	
		\times	
		$ \begin{array}{c} & & \\ & & $	
		H CH2	
Beer Su	unlight flavor	Photolysis of humulone: reaction of one	
	0	degradation product with hydrogen sulfide	
Door DL	analia noto	yielding 3-methyl-2-buten-1-thiol	
Deel Ph		decarboxylation by <i>Hafnia protea</i>	

Table 5.5. "Off-flavors" in food products

